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A quasiparticle model of the Bose fluid is developed which provides a simple understanding of the general 
first-order predictions of the quantum-statistical theory presented in the preceding papers of this series. 
The essence of the model is that there are two kinds of quasiparticles superimposed on a background sea of 
nonzero-momentum superfluid particles. I t is out of this sea that superfluid quasiparticles, or holes, and 
normal-fluid quasiparticles are created. The normal fluid is composed entirely of quasiparticles. The 
results presented in this paper are only valid at temperatures such that the fraction £ of zero-momen­
tum (superfluid) bosons is appreciable, although £^0 for all temperatures below the transition tempera­
ture inasmuch as Bose-Einstein condensation is assumed to be the underlying cause of the "super" properties 
of a Bose fluid. At 2̂  = 0, only the zero-momentum bosons and the nonzero-momentum superfluid sea exist, 
there being no quasiparticles in this case. I t is suggested that the excitations in helium n measured by exist­
ing neutron scattering experiments correspond to the destruction of superfluid quasiparticles, and that the 
creation of normal-fluid quasiparticles should also be observable. 

1. INTRODUCTION 

THE microscopic theory of a degenerate Bose sys­
tem, or Bose fluid, which is currently accepted is 

that due to Feynman.1 It is with a view towards im­
proving the understanding which Feynman's theory 
has given us that the present series of papers2 has been 
undertaken. Our approach in these papers has been 
to use the formalism of quantum statistics, and in the 
first two papers a rather general and complicated 
formalism was developed based on the assumption that 
the lowest, or zero momentum, free-particle state is 
macroscopically occupied in the Bose fluid. In the third 
paper the use of the formal theory was illustrated by an 
application to the model system of a dilute Bose gas of 
hard spheres. Clearly, London's suggestion3 that the 
phenomenon of Bose-Einstein condensation is the under­
lying microscopic cause of the "super" properties of 
helium n becomes a basic assumption in our approach. 

The present paper is concerned with an initial attempt 
to derive explicit expressions for the thermodynamic 
properties and the momentum distribution of a Bose 
fluid, which can be valid when applied to helium n. The 
expressions which are here derived are valid only at 
sufficiently low temperatures such that the fraction £ of 
zero-momentum bosons is appreciable. But whereas this 
initial "first-order" calculation does not permit an in­
vestigation of the transition temperature region, it does 
permit the development of a quasiparticle model for 
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understanding the low-temperature results. In fact, it is 
within the framework of the quasiparticle model, which 
we describe in Sees. 2 and 3, that all of the results of 
this paper are given. 

The usefulness of a quasiparticle model is threefold. 
Firstly, it provides a qualitative picture of the micro­
scopic behavior of the many-body system. Secondly, 
it makes possible a simple interpretation of the explicit 
or derived predictions of a microscopic theory. And 
thirdly, it serves as a basis for making new predictions 
regarding many-body phenomena such as transport 
properties, which may not be directly calculable by the 
microscopic theory. In this paper we are only concerned 
with the first two of these aspects. For example, in 
Sec. 5, it is shown that our Bose fluid quasiparticle 
model can give considerable insight into the quantum-
statistical expression which we have derived for the 
chemical potential. 

The requirements on a Bose fluid quasiparticle model 
are quite severe. It must explain the two-fluid aspect of 
the Bose fluid, first introduced by Tisza,4 in a natural 
way and in such a way that there is no normal fluid at 
T= 0. But the model must also permit a large population 
of nonzero-momentum bosons at T=0, SL point which 
has been emphasized by Penrose and Onsager.6 In fact, 
these requirements are all satisfied in a natural manner 
by our quasiparticle model. The essence of the model is 
that part of the superfluid which is composed of nonzero-
momentum bosons behaves as a background "sea," 
somewhat analogously to the sea of a Fermi fluid. It is 
out of this sea that superfluid quasiparticles, or holes, 
and (real) normal fluid quasiparticles are created when 
T^O. The resulting double set of quasiparticles, which 

4 L. Tisza, Nature 141, 913 (1938); see also Phys. Rev. 72, 838 
(1947). 

6 O. Penrose and L. Onsager, Phys. Rev. 104, 576^(1956). 
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constitute the normal fluid, are characterized not only 
by their energies e+(p) and €_(p) and their probability 
functions /+(p) and — /_(p), but also by their "basic" 
wave-function amplitudes a+(p) and ce_(p). Thus, the 
the two different quasiparticles can interfere in the 
quantum-mechanical sense. The "basic" wave functions 
referred to are those of the elementary pairs of real 
bosons, carrying momenta p and — p, which form the 
building blocks for the total quasiparticle wave function 
[see Eqs. (32)-(34)]. In view of this structure of the 
total wave function, it should be clear that the Bose 
fluid quasiparticles, although characterized by momenta 
p^O, have no momentum in a system at rest. 

In order to present the Bose fluid quasiparticle model 
in the most plausible manner, it has been developed by 
using the concept of the Bogoliubov transformation.6 

Now, in fact it is shown in Sec. 3 that for T5*0 the 
complete understanding of the double quasiparticle 
spectrum requires the concept of a double Bogoliubov 
transformation, although the two transformations are 
not actually performed. The first Bogoliubov trans­
formation is associated with the separation of the bosons 
into normal and superfluid components, whereas the 
second transformation is associated with the separation 
of the bosons into normal and superfluid quasiparticles. 
The two transformations are quite different, as the 
reader will discover. 

It is to be emphasized that the quasiparticle model 
presented in this paper has been developed completely 
with a view towards explaining the "first-order" pre­
dictions of the quantum-statistical theory (Sec. 4). 
Perhaps second-order calculations will modify some 
aspects of this model. It may even be that the best 
interpretation for the first-order results has not been 
achieved here. But the main point is that the thermo­
dynamic predictions and the momentum distribution 
[Eq. (30)3 given here are results which can be believed, 
as they are independent of the quasiparticle model. 

2. SINGLE BOGOLIUBOV TRANSFORMATION 
AT T = 0 

The Bogoliubov transformation6 is the most im­
portant feature of the quasiparticle model which will be 
developed in this paper for the degenerate Bose system. 
It is therefore of considerable value to review the moti­
vating steps in the derivation of this transformation, 
introducing at the same time notation which will prove 
useful to the discussion of the following sections. 

We begin by writing the many-body Hamiltonian H 
in the Fock representation as 

# = E t f k W o k + i X aiW(kik2 |7<«|kik4>^8,( l) 
k kik2k3k4 

• N . Bogoliubov, J. Phys. (USSR) 11, 23 (1947). See also S. T. 
Beliaev, The Many-Body Problem, edited by C. DeWitt (John 
Wiley & Sons, Inc., New York, 1959), pp. 343-356. 

where 
<kxk2| 7<«> |k3k4)= (kjfcl V\k3k4)+(k1k2| V\k4k3) (2) 

is a symmetrized matrix element of the basic two-
particle interaction. The quantities a^ and a^ are the 
annihilation and creation operators, respectively, of the 
free bosons, and these satisfy the usual commutation 
relations. One observes that each of the momentum 
state sums in (1) includes a contribution from the zero-
momentum state, which when considered from the point 
of view of deviations from the free-particle condition 
may be macroscopically occupied (in a system at rest). 
In order to investigate the ground state ( r = 0 ) of the 
Bose system, it is therefore necessary to treat the zero-
momentum state specially. 

The difficulty presented by the zero-momentum state 
can be most easily seen when attempting to calculate the 
deviations from the free Bose-gas condition by applying 
many-body perturbation theory in a straightforward 
manner. One assumes in first approximation that the 
operators ao and a J may each be replaced by the number 
(iVo)1/2,7 and one then separates from the interaction 
part of the Hamiltonian (1) the resulting diagonal terms. 
Finally, a detailed study8 of the perturbation treatment 
of the off-diagonal interaction terms shows that the per­
turbation theory for the ground-state energy diverges in 
the limit (AO, 0 ->°° (keeping n= (N)/Q finite). It is the 
macroscopic occupation of the zero-momentum state, 
i.e., the fact that (NQ)~(N), which causes this diverg­
ence. The Bogoliubov transformation is a method 
whereby this failure of perturbation theory may be 
overcome. 

According to the preceding paragraph, the Hamil­
tonian (1) can be approximately rewritten for the de­
generate Bose system as 

H^Ho+H', (3) 
where 
# 0 ^ Z GpVop+K^o>2<oo| v<s> | oo) 

+WEflP
tflp<pO|^fl>|pO) 

p 

+IWE[>P t a_P t <P-p |^ |00 ) 

+ <00|F(«|p-p)apa_p], (4) 

H'=±(No}l/2 E «2t(0p2|Fs|p3p4)a3a4 
P2P3P4 

+h(N,)m E a1W(pip2|F(«|.P30)o3 
P1P2P3 

+i E aiWfriPslF^IP^)^, (5) 
P1P2P3P4 

7 This step is analogous to the introduction of the x-ensemble 
formulation of quantum statistics in T. D. Lee and C. N. Yang 
[Phys. Rev. 117, 897 (I960)]. In the ^-ensemble formalism, 
however, the dynamical (as opposed to the statistical) quantum-
mechanical effects of the operators ao and a$\ are included (see 
MI). 

8 T . D. Lee, K. Huang, and C. N. Yang, Phys. Rev. 106, 135 
(1957). 
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and where we have introduced the convention that kt-^pa-
when ki cannot be zero. In this section we shall only 
consider the case of weak interactions and in this case 
the off-diagonal interaction terms which give the 
dominant contribution to the ground-state energy are 
those which have been included with H0 in (4).8 

The approximate Hamiltonian (3) is a function of the 
variable number iV0, and therefore the number of non­
zero-momentum particles is not a conserved quantity. 
In statistical mechanics, when we wish to consider the 
possibility that the total particle number may have 
fluctuations we use the grand canonical density matrix 

P G = e x p [ - 1 2 / ] expP\jG-Er\, (6a) 

instead of the canonical density matrix 

p = e x p / 3 [ * - Z r ] , (6b) 

where / i s the grand potential, G is the Gibbs free-energy 
or thermodynamic potential, \£ is the Helmholtz free 
energy, and /3=(&r) - 1 . I t seems natural, therefore, to 
consider instead of the Hamiltonian H of (3) the 
Hamiltonian9 

Ho=H0-gY,<ht<h+H' 
(7) 

where 

#o'=E tfPVpH4W£W(00|00) 
p 

+2£Z V^(p0|p0) 
P 

+HZC«pta-ptFF(p-p|00) 
P 

+ JF (00 |p -p )a p a_ p ] , (8) 

^ (k 1 k 2 | k 3 k 4 )^KA0(k ik 2 | 7<*>|k8k4>, (9) 

Z=(No)/(N), (10) 
€p = COp-£, (11) 

and g is the chemical potential or thermodynamic po­
tential per particle of the system. Thus, in the Hamil­
tonian (7) all single-particle energies are expressed rela­
tive to the chemical potential g. Clearly then, we may 
eventually derive an expression for g by interpreting it 
as the self-energy of a zero-momentum boson. The 
quantity £ of (10) is the fraction of zero-momentum 
bosons, a number which is probably ^ 0 . 1 even at T=0,5 

but never zero below the transition temperature of the 
degenerate Bose system. In fact, if the interpretation 
given by London3 is correct that the transition from 
He i to He n can be characterized by the onset of Bose-
Einstein condensation, then the transition temperature 
may be calculated by setting £=0 + . Finally, we have 

9 See also N. Hugenholtz and D. Pines, Phys. Rev. 116, 489 
(1959). 

introduced the function ^(kik 21 k3k4) in Eq. (8) because 
it is well-defined in the limit (TV), 12 —•»«>. 

Our next step is to diagonalize the Hamiltonian (8), 
and it is at this point that we introduce the Bogoliubov 
transformation,6 

$,t = /V*(p)«p t+* ,- l / 2«-p> 

where we assume that the coefficients F+1/2 and JF_1 / 2 

are real quantities. In order that the transformation be 
canonical, i.e., that the £p and ^ satisfy the same com­
mutation relations as the corresponding free boson 
operators, we must set 

J ?+ (p ) -F_ (p )= l . (13) 

Upon inverting the transformation equations (12) and 
substituting the resulting expressions into Eq. (8), one 
obtains for HJ the result 

ff0'=i W^ooioom Z C«+(p)+ei(p)]̂ tlp 

p 

P 

+ £ CI.^(P-P|OO) JF+(P) 
P 

+UW(00\p-v)F-(p)-e1(v)F+
1'K9)F-uKp)l 
X K , f p + f , t { _ p t ] , (14) 

where 

ei(p) = e(p)+2$W(pO|pO), (15) 

e+(p) = - e . ( p ) S [ ? + ( p ) + F . ( p ) J i ( p ) - ^F+^(P)FJ'KP) 

X [ W / ( p - p | 0 0 ) + I I ' ( 0 0 | p - p ) ] . (16) 

The condition of diagonalization, which involves setting 
each of the coefficients in the last term of (14) equal to 
zero, then gives a second relation between F+(p) and 
F-b), 

J ^ ( 0 0 | p - p ) [ F + ( p ) + F _ ( p ) ] 

- e i ( p ) / V ' W _ i / 2 ( p ) = o , (17) 

where we have used the Hermitian property of the two-
particle interaction V. 

I t is convenient to solve for F+(p) and F_(p) by 
writing them in the form [see Eq. (13)] 

F+(P) = [ I - « K P ) 3 - 1 ; ^ P W C P J C I - ^ C P ) ] - - 1 . (18) 

One then finds from Eqs. (15)—(17) the expressions 

a(p) = fPT(00|p-p)[e f(p) + €i(p)]-1 , (19) 

<4-(p)=-€L.(p) 

= [ 6 i 2 ( p ) - J W 2 ( 0 0 | p - p ) ] 1 / 2 - - > O(p). (20) 
p-*0 

The Bogoliubov transformation which we have just 
presented transforms the T=0 degenerate Bose system 
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(21) 

from a free-particle description to a quasiparticle de­
scription. We interpret the three resulting single-quasi-
particle energies ei(p), e+(p), and e_(p) as follows: 

ei(p) = internal energy of a quasiparticle 
(within the Bose fluid), 

e+(p) = kinetic energy of a normal-fluid 

quasiparticle (within the Bose fluid), 

e_(p) = kinetic energy of a superfluid 
quasiparticle (within the Bose fluid). 

With these interpretations we have introduced the two-
fluid aspect of a degenerate Bose system, first stated by 
Tisza.4 The justification for these interpretations arises 
after first defining the normal-fluid vacuum state by 
the equations 

io>=niOp), «,io,>=o, 
p>0 

(22) 

where the product over all p>0 means that each mo­
mentum pair (p, — p) is to be considered only once. The 
ground-state energy is next readily obtained by writing 
the Hamiltonian (14), together with the diagonalization 
condition (17), in the form 

H„'=i<tf>?W(00|00)-i £ Ce-(p)+«i(p)] 
P 

+IECe+(p)-6_(p)]^|P . (23) 

has been previously overlooked in the literature. In fact, 
the above interpretation is still not completely correct 
as will be shown in the following section when the case 
7V0 is considered. It should be observed at this point, 
however, that a "double" quasiparticle spectrum is 
completely expectable. For the Bogoliubov transforma­
tion (12) is such that a normal-fluid state vector of 
momentum p may be interpreted as a combination of 
amplitudes for boson pairs with each boson pair carrying 
the momenta p and — p [see Eq. (26)2- Therefore, in 
order to fully utilize the free-particle coordinates avail­
able in such a canonical transformation one must have 
two different kinds of quasiparticles for each momentum 
pair (p, — p). We note that one consequence of this 
pairing is that all quasiparticles in a system at rest have 
momentum zero. As a final remark concerning the 
double-quasiparticle spectrum, it is important to ob­
serve that although e+(p) = — e_(p) in the weak-inter­
action limit of this section, this simple relation between 
e+(p) and e_(p) is not true in general except perhaps 
for low-momentum values. 

In order to compare the prediction of Eq. (23) for the 
ground-state energy of a system with that given by more 
sophisticated theories, in which the interactions may be 
strong, an important modification is necessary. To see 
how this modification arises, we consider the asymptotic 
form of the superfluid energy [e_(p) + ei(p)], 

[e_(p) + ei(p)]- >ifnnoo|p-p)€-Kp). ^ 

Now, at J P = 0 the degenerate Bose system must be 
entirely superfluid, if by superfluid we mean that portion 
of the Bose system which is without entropy. Therefore 
we identify the energy [e_(p)+ei(p)] with a superfluid 
quasiparticle of momentum p and the energy [e+(p) 
+ €i(p)] with a normal-fluid quasiparticle of momentum 
p, since at T—0 the last term of (23) does not contribute. 
We then assume that only the energies e+(p) and e_(p) 
are relevant for describing the normal and superfluid 
quasiparticle energetics within the Bose fluid, and 
thereby we arrive at the interpretations (21). Further 
justification can only be obtained when the 7V0 con­
siderations of Sec. 3 are compared with the predictions 
of quantum statistics in Sec. 4. 

The above discussion shows how the two-fluid model 
of a degenerate Bose fluid can arise in a natural way in a 
microscopic theory. Moreover, the interpretation which 
is made is such that the superfluid portion of the Bose 
fluid contains nonzero as well as zero-momentum 
bosons,10 the latter probably always being in the 
minority5 in real helium n. Corresponding to each of the 
two fluids is a set of quantum-mechanical normal modes, 
or quasiparticles. Of course, at r = 0 only one fluid, the 
superfluid, occurs and this fact is probably why the 
above interpretation of the Bogoliubov transformation 

10 We are indebted to Professor C. N. Yang for emphasizing 
this point to us (private communication). 

Suppose we assume that the function TF(00|p—p) has 
no natural cutoff when p —> oo. Then, in this case the 
second term of (23) would be a divergent integral in the 
limit 12—>oo. Subtracting the "divergent" term given 
by - | E P times the right-hand side of (24), we would 
obtain the "well-defined" expression for the Hamiltonian 

#o"- t fo '+ iZ £W2(00|p-p)e-Kp) 
p 

=IWWoo|oo) 

- \ £ {[e-CpHeiCp^-HW^OOlp-pJe-Kp)} 
V 

+i£[6+(p)-€-(p)]£p t£p. (25) 
p 

In fact, this last Hamiltonian has a very close corre­
spondence with the general (2V0) expression for the 
Helmholtz free energy which is written down in the 
next section. It is also essentially the effective Hamil­
tonian which one encounters when the pseudopotential 
method is applied to a low-density gas of Bose hard 
spheres at T=0.8 We shall call the second term of (25) 
the Bogoliubov transformation energy (at T=0). 

The ground-state vector (0P) of (22) can be expressed 
in terms of the corresponding free boson vacuum state 
vector | )p by using the transformation equations (12). 
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A straightforward calculation yields the result 

|Op) = [ l - « s ( p ) ] ^ e x p [ - a ( p ) V 0 V ] | >»• (2 6) 

From this expression one sees explicitly how the free 
Boson pairs occur in the superfluid at T=0. Their 
momentum distribution is given by the expression 

<»(p)> —» (Op I of<h 10P) = F_(p), (27) 

where F_(p) is given by Eq. (18). 

3. DOUBLE BOGOLIUBOV TRANSFORMATION 
AT 7V0 

An important characteristic of the many-body system 
is that its microscopic description cannot in general be 
given in terms of a "pure" quantum-mechancial state. 
Because of our lack of knowledge concerning the time 
development of many-body systems we must describe 
them by the "mixed" states which result from statistical 
averaging. Since our purpose in this paper is to describe 
in simple terms the predictions of quantum-statistical 
averaging for the degenerate Bose fluid, we shall be 
forced to use the concept of a mixed wave function in 
this section. By a mixed wave function or state vector 
we mean one which properly gives the distribution 
functions and thermodynamic properties of the system. 
Of course, at the special temperature r = 0 the many-
body system can be described by a pure state without 
statistical averaging, as we have done in Sec. 2. 

The Bogoliubov transformation equations (12) and 
(13), 

€P = F + 1 « ( p ) « P + ^ - 1 / s ( p ) ^ , t , f 2 g ) 

F + ( p ) - F _ ( p ) = l , 

will henceforth be called the first Bogoliubov trans­
formation equations. The "application" of this first 
transformation to a Bose fluid at a general temperature 
TT^Q will be interpreted as meaning that the real bosons 
are separated by the transformation into normal and 
superfluid components. We have seen with Eq. (27) that 
the quantity F_(p) is the momentum distribution of the 
superfluid nonzero-momentum bosons at T=0. This 
fact suggests that we write for 7 V 0 

F_(p) = number of superfluid bosons of momentum 
p per free-particle state, 

F+(p) = number of normal-fluid bosons of 
momentum p per quasiparticle state, 

v'(p) = number of quasiparticles of momentum 
p per free-particle state, 

general expression 

(29) 

<»(p)>=F_(p)+/(p)F+(p) 

= [ l - ^ ( p ) ] - i [ ^ ( p ) + / ( p ) ] , (30) 

where a free-particle state is one such that the volume 
element in momentum space is given by Q53p= 1. With 
the admittedly-peculiar identifications (29) we may im­
mediately write for the momentum distribution the 

where we shall continue to use Eqs. (18) for F+(p) and 
jF_(p). Both of the quantities a(p) and / (p ) will be 
determined below for T^O. 

Our understanding of the degenerate Bose system in 
Sec. 2 was that its quasiparticles were of two types, 
corresponding to the normal and superfluids, respec­
tively. And yet in Eq. (30) we have associated the 
quasiparticles entirely with the normal-fluid momentum 
distribution. The underlying reason for this is the im­
portant assumption which we shall now make that no 
quasiparticles exist at T=0. The superfluid is without 
quasiparticles at r = 0 . We may correlate this assump­
tion with the need to have two kinds of quasiparticles 
by assuming that the superfluid quasiparticles are holes 
in the nonzero-momentum superfluid. The superfluid 
quasiparticles do not therefore contribute to the super-
fluid-momentum distribution, but rather their effect on 
(n(p)) is implicitly contained in */(p) which must be 
multiplied by F+(p) > 1 in order to give the normal-fluid 
momentum distribution. Having presented this concept 
for what is meant by quasiparticles in the Bose fluid, we 
shall continue to use the single-quasiparticle energy 
interpretations given by (21). I t is interesting to note 
that Lieb11 has arrived at a similar interpretation of the 
one-dimensional Bose gas model which he has studied. 

At this point we can write down a "mixed" state 
vector | T) which properly reproduces the momentum 
distribution (30). Upon comparing Eqs. (18), (26), and 
(27) with Eq. (30), one can readily verify that | T) is 
given by 

i r>= n {[i+a-2(py(p)]i/2i(U-Co(p) i >,} 
p>0 

Co(p) = {[l+a-2(i>y(p)]I/2[l-«2(p)]1/2 (31) 
- [ l - a 2 ( p ) - / ( p ) ] 1 / 2 } > 0 , 

where the second term in | T) is required in order that 
| T) be normalized to unity. Physically, we can under­
stand why | T) is a linear combination of free-particle 
and quasiparticle vacuum states when 7 V 0 , because the 
free-boson vacuum state | ) is depleted by excitations 
at nonzero temperatures. Since | T) is a "mixed" state it 
cannot be an eigenstate of £pf£p or X)p £pf£p> so that the 
the form of Eq. (31) is not inconsistent with other 
considerations. 

Lee, Huang, and Yang8 have shown that the N boson 
position space wave function corresponding to | T) has 

11 Elliot H. Lieb and Werner Liniger, Phys. Rev. 130, 1605 
(1963); Elliot H. Lieb, ibid. 130, 1616 (1963). 
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the form (for iV=even) 

* r ( r i , r v . ' . , r J , ) = 0 - ™ I I D-<* 2 (p) -V(p)] 1 / 2 

p>0 

N/2 
+ E X n f e r r - r y ) . (32) 

For large n values, the second free-boson vacuum term 
can be neglected in (31) and in this case the expression 
for Xn is 

Xn > CT^rN/2l(.Niyi(N-2n) ! ] 1 / 2 

XN- E /(ri2)/(r34) • • • / ( r w _ l t w ) , (33) 

where 

CT= n [l+«-2(p)/(p)]1/2[l-a2(p)]1/2, 
P>0 

/ ( r ) = - t f - i £ e ' > r a ( p ) , (34) 

and the £ over { r*} is a sum over the N ![(iV—In) In \2n~]~l 

different ways of selecting n pairs of 2n bosons from 
among a total of N bosons. In deriving (34) we have 
assumed that a(—p)=a(p), which will be true for an 
isotropic system. We see from (34) that a(p) is essentially 
the amplitude for relative two-boson plane-wave states 
in the Bose fluid. I t is therefore a most important func­
tion of the microscopic quasiparticle theory. We shall 
call the function / ( r ) the basic pair wave function. 

We have not yet clarified the microscopic understand­
ing of the "double" quasiparticle picture at 2 V 0 , be­
cause the "first" Bogoliubov transformation (28) only 
separates the real bosons into two different components. 
The clarification is achieved by introducing a second 
Bogoliubov transformation, 

Sp '= /+ 1 / s (p )«p+/ - 1 / , (pKp t 

/+(P)-/_(p)aa. 
(35) 

Whereas the first Bogoliubov transformation is con­
cerned with the separation of the bosons into the normal 
and superfluid components, the second Bogoliubov 
transformation is concerned with the separation of the 
bosons into normal and superfluid quasipartides. Thus, 
the first Bogoliubov transformation is macroscopically 
oriented while the second one is microscopically oriented, 
but both are transformations away from the free-boson 
description of the Bose fluid. The fact that (/+— /_) may 
be only approximately equal to unity is a result of the 
quantum-statistical theory discussed in Sec. 4 where 
explicit expressions for /+(p) and /_(p) are given. I t is 
possible that an "exact" calculation would give 
/ + — / _ = 1, but it is more likely that the transformation 
is not completely canonical. That is to say, the normal 
and superfluid quasiparticles are not independent 
quantities and their amplitudes can interfere. 

The interpretation which we give to the quantities 

/+(p) and /_(p) is as follows: 

~ / _ ( p ) = fraction of bosons per superfluid quasi­
particle in the absence of temperature, 

/+(p) = fraction of bosons per normal-fluid quasi­
particle in the absence of temperature, 

where the minus sign in the first expression is required 
because of our interpretation that superfluid quasi­
particles are really holes in the superfluid "sea." The 
effect of temperature is that in the absence of statistics 
the quasiparticles are distributed according to the 
following weighting functions [see Eqs. (21)]: 

P4p)=- /_ - i (p )e -*-<p> 

= probability for finding a superfluid quasiparticle 

of momentum p in a single free-boson state, 

= probability for finding a normal-fluid quasiparticle 
of momentum p in a single free-boson state. 

(37) 

Because the normal and superfluid quasiparticles are 
not independent quantities, whereas the real bosons are, 
the total probability P in the absence of statistics for 
finding either quasiparticle in a single free-boson state is 
obtained by taking the inverse of (P + ~ 1 +P_ _ 1 ) . 

p^ (p+-i+p_-i)-i= iu^+-u^-y (38) 

The effect of statistics on this last result is then to give 
us the quantity / ( p ) of (29) by the expression 

/ (p ) = P ( l - P ) - 1 

=c/+(p)^<»)-/-(py*-<»)-i2-1. (39) 

I t is to be emphasized that in the derivation of (39) one 
must recognize that it is only the free bosons which 
satisfy Bose statistics, and not the quasiparticles. This 
is the motivating reason for the several steps (36)-(38) 
which precede the result (39). 

We now use the above concepts to derive an expres­
sion for the amplitude a(p) of Eqs. (18) and (34). For 
this purpose we first introduce the "microscopic" ampli­
tudes a+(p) and a_(p) by the definitions [see Eq. (19)] 

«±(p) = ^ o , o ( 0 0 | p , - p ) [ 6 T ( p ) + 6 1 ( p ) ] - 1 , (40) 

where W#(kik21 k3k4) for i and j belonging to the set 
( + , —, 0, 1) is the strong interaction generalization of 
Eq. (9) to be defined in Sec. 4. The relation between the 
partial amplitudes (40) and the total amplitude is then 
determined by the equation 

P+P_c*(p) = / ( p ) [ P _ « _ ( p ) + P + a + ( p ) ] , (41) 

which upon substituting Eqs. (37) becomes 

«(p) = / (P) («--(p)/+(p)^+ ( p ) ~ a + ( p ) / - ( p ) ^ - ( p ) 

— a_(p). (42) 
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I t can be seen from Eqs. (39) and (42) that the second 
Bogoliubov transformation (35) has enabled us to in­
crease our microscopic understanding of the quasi-
particle distribution function / (p ) and the amplitude 
a(p). Actually, we never apply the two Bogoliubov 
transformations to explicitly calculate the properties of 
a Bose fluid, as indeed we probably cannot at 7 V 0 
where the mixed states due to statistical averaging 
occur. Rather, the two Bogoliubov transformations are 
invoked in this section in order to facilitate our under­
standing of the results which are predicted by the 
quantum-statistical theory as discussed in Sec. 4. We 
note that at T— 0 the double Bogoliubov transformation 
becomes a single Bogoliubov transformation because 
there are no quasiparticles to be described at T=0. 

We next turn our attention to the calculation of the 
thermodynamic properties of a Bose fluid. In Sec. 2 we 
introduced the chemical potential g into the Hamil-
tonian (7) in order to effectively deal with the fact that 
the total number of nonzero-momentum bosons is not 
conserved for a Bose fluid. But, as we shall show in 
Sec. 5, the chemical potential can be calculated as the 
self-energy of a zero-momentum particle (which exerts 

no pressure and carries no entropy). This means that we 
may choose for thermodynamic independent variables 
the set f3, n, and 0, where n= {N)/Q, is the total density 
of bosons. For this set of variables, the appropriate 
characteristic function of thermodynamics is the Helm-
holtz free energy SF. 

The relation between the Helmholtz free energy and 
the average energy (E) is given by the familiar expression 

Jo 
dt(E{t)). (43) 

Moreover, for a free Bose gas below the transition tem­
perature the Helmholtz free energy is given by 

* o = ( 1 - Q W g o - r 1 E P m [ l + » ( p ) ] , (44) 

where v(p) is the momentum distribution for the free 
bosons, £ is the fractional occupation of the zero-
momentum state, and go^C^) - 1 . Upon comparing these 
last two expressions with the approximate Hamiltonian 
(25) [and remembering Eq. (7)], we arrive at the follow­
ing plausible expression for ^ : 

*(nAtt) = (l-mk+mN)W0,o(00\00)+p-i dtEB(t)-p-iyL { l n [ l + / ( p ) ] + i I n [ l + F . ( p ) ] } , (45) 
Jo P 

where W0,0 is the strong interaction generalization of W and EB(t) is the Bogoliubov transformation energy at 
TT^O. The second F_(p) part of the last term is the contribution of the momentum distribution of the superfluid 
sea [see Eqs. (29)] which occurs in the generalization of the second term of (44). This last term in (45) can be viewed 
as the result of the quantum-statistical averaging of the last term in Eq. (25). The quantum-statistical theory also 
includes strong interaction contributions from H', Eq. (5), in a manner which would be difficult to clarify here, 
but which corresponds to the fact that W^W. 

The Bogoliubov transformation energy is calculated in analogy with Eq. (41), except that the effect of statistics 
is not considered. Thus, one obtains 

•E*(0= - i E {(P++ JP-)-1(^- ' [«-(p)+«i(p)]+i>+ iCe+(p) + ei(p)])- i fW„,o(00|p, -p)e- i (p)} 

E {[e-(p) + ei(p)]-f£Wo,o2(00|p, - p ) e ~ ^ ) } , (46) 

where 
P±<+>(p)= ± / ± ( p ) e x p [ - / e ± ( p ) ] . 

The determination of thermodynamic quantities from the Helmholtz free energy is accomplished with the aid 
of well-known formulas. Thus, the average energy is given by 

(E)=(d/dfi(p*)Q,n, (47) 

where it is important to note that in general the quasiparticle energies (21) are all (weakly) dependent upon p. 
The pressure (P is given by the expression 

= ^k-UKNWUOOlOO)-?-1 f dtEB(t)+0-i £ { m [ l + V ( p ) ] + J l n [ l+F_(p ) ]} , (48) 
Jo P 

where it is well to observe that for He n this quantity must vanish. 
The fractional occupation of the zero-momentum state £, Eq. (10), is given with the aid of Eq. (30) by the 

expression 

{ ^ - ( n f l ) " 1 E [ I " a 2 ( p ) ] - I [ « 2 ( p ) + ^ ( P ) ] . (49) 



D E G E N E R A T E B O S E S Y S T E M . IV A 945 

Finally, the fractional normal-fluid density 8N can be calculated by using the expression 

d^inQ)-1 E ^(p^+CpHfao)-1 E ^ ( P ) [ I - « 2 ( P ) ] _ 1 . (5°) 
p p 

4. PREDICTIONS OF QUANTUM STATISTICS 

The purpose of the preceding two sections has been to present a framework, the quasiparticle model, for under­
standing in a simple way the predictions of the quantum-statistical theory of a Bose fluid.2 The fundamental 
interaction quantity which enters into this theory is the function FT^(kik21 k3k4) which reduces to the quantity 
of Eq. (9) in the weak-interaction limit. 

^•(k1ka|k8k4)= - K A 0 ^ ( k i M W , 

where i and j can each be + , —, 0, or 1 and from Eqs. (6) and (39) of M i l we have 

g#(kik21 k3k4) = /i(kik21 k5k4) + L Mk±k2| k5k61 k3k4) 

1 \ / 1 

(51) 

k5k6 

X 
L \<<ki) 

-W 
)/ Wki)+ey 

(k<,)-e(k6)-e(k6) )] i) + e (k 2 ) -e (k 5 ) -e (k 6 ) , 

= - [(k3k41 Ga | k!k2)+(k4k31 Gi31 kik2>]. (52) 

Explicit expressions for the energies e+(k), e_(k), and ei(k) of Eq. (21) will be given below, and eo(k) = 0. The 
quantity e(k) is given by Eq. (11). 

The second line of Eq. (52) is a result which has been derived previously by Mohling, and explicit expressions 
for the functions / i and / 2 in terms of free-particle reaction matrices have also been given by him.12 The operator 
Gij is a two-particle reaction matrix defined by the operator equation 

G<,= V+ VPliEa+lg-H^V, (53) 

where H2 is the two-particle Hamiltonian (including V) and P denotes that the principal value of the energy 
denominator is to be taken. The energy Ey is given by [e*(&i)+€j(&2)] in the (real) matrix elements of (52). I t 
must finally be mentioned that the two lines of (52) are not quite correct if one considers the mathematical idealiza­
tion of an infinite repulsive core as part of the basic two-particle interaction V. 

The reaction matrix G^ is not a Hermitean matrix, so that the order of the k indices in (51) is important. The 
relation between g#(kik21 k3k4) and gm,w(k3k41 kik2) is13 

g#(kik21 k3k4) = gm,n(k3k41 kik2)+ L /2(kik21 k5k61 k3k4) 
k5k6 

X K em(k3) + en(kb) — e(k5) — e(k6) H 6 !-(k1)+e3(k2)-€(k6)-e(k6) )]• 
(54) 

where j% is symmetric under the interchange (kiks) ?=i 
(k3k4). 

The quantum-statistical theory of a Bose fluid which 
was developed in M I and M i l was applied to a model 
system, the dilute gas of Bose hard spheres, in M i l l . In 
this latter paper a convention was established for de­
noting the "order" of any calculated term, which was 
that the order equals the number of independent 
momenta in the corresponding graph. According to this 
convention, the results described in the preceding sec­
tion are those of a complete first-order calculation. Now, 
in Sec. 7 of M i l l the general first-order expressions for 
the quasiparticle energies of (21) were derived. Thus, 

12 F. Mohling, Phys. Rev. 124, 583 (1961); 128, 1365 (1962). 
13 See Eqs. (30) and (66) of F. Mohling, Phys. Rev. 124, 583 

(1961). 

from Eqs. (6), (84), and (86) in M i l l we have the results 

€i(p)=e(p)+2{TTio(pO|pO), -(55) 

[e;(p) + e i ( - p ) ] 
= Q(p)+CQ 2 (p ) -SW 2 o ,o(00 |p , - p ) ] 1 / 2 , (56) 

C.(p) = 6(p) + C^,o(pO|pO) + ^ 1 ) 0 ( - p O ! ~ p O ) ] , 

where i=-\- or — only in these last expressions. In the 
weak interaction limit Eqs. (55) and (56) clearly reduce 
to Eqs. (15) and (20), respectively. By referring to 
Eqs. (51) and (52) it can be seen that the expressions 
(55) and (56) are actually rather complicated coupled 
integral equations for the energies eh e+, and e_. 

The derivation of the first-order expressions for the 
quantities /+(p) and /_(p) is given in Appendix A. The 
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result, Eq. (A6) is 

/±(p)Sfo>o-1(00|p-p)[e f(p)-L(p)]-i 
X^, i (p-P |00)[6 ± (p)+« 1 ( - P ) ] . (57) 

Similarly, the quantum-statistical derivation of Eqs. 
(40) and (42) is given in Appendix B. An important 
consequence of this derivation are the p=0 results given 
in connection with Eqs. (B3) and (B4). 

a(0) = a+(0) = a_(0) = l . (58) 

As a final matter for this section, we consider the 
quantum-statistical derivation of Eq. (45) for the Helm­
holtz free energy to first order. With the aid of Eqs. (8), 
(9), (47), (57)-(60) of Mi l l and Eqs. (6), (38), (40), 
(107), (109), (110), and (115) of Mil one can show that 
the first-order expression for the grand potential is 

/(»A«)=i»-1 £ inCi+/(p)][i+(«(p))] 
P 

+ ^[g-^TF„, 0 (00 |00)] 

- Q - 1 / dtEB(t), (59) 
Jo 

where EB{() is given by Eq. (46). In the derivation of 
the expression for EB(J) it is necessary to use Eqs. (Al) 
of Appendix A and to make approximations of the type 

(A5). One then arrives at Eq. (45) for the Helmholtz 
free energy by using Eq. (30) and the expression 

y=(N)g-p-^f. (60) 

Instead of Eq. (60) one may equivalently use Eq. (13') 
of MI together with Eq. (43). 

5. CHEMICAL POTENTIAL 

The chemical potential g is an important quantity for 
which we have not yet given an expression. This 
quantity is required in the theory in such relations as 
Eq. (45) for the Helmholtz free energy and Eqs. (55) 
and (56) for the quasiparticle energies. In the latter 
equations g occurs by virture of its appearance in Eq. 
(11). To be sure, it is necessary to find an expression for 
g, because the useful thermodynamic independent vari­
ables for a Bose fluid are n, 0, and 0. As we have re­
marked above Eq. (43), the chemical potential can be 
calculated as the self-energy of a zero-momentum boson. 
In fact, this last statement is the basis of Eqs. (2) and 
(49) of Mil l for the first-order determination of g by 
the relation 

g=-[A0<0>+Ai(0)+A2c°>]. (61) 

The explicit quantum-statistical calculation of A0
(0), 

Ai(0), and A2
(0) is outlined in detail in Sec. 4 of Mi l l 

and after tedious manipulations and integrations one 
obtains the following general results: 

-Ao<0> = ^oo(OOlOO)-Aoi(0), (62) 

- Ax«» = 2(nO)-1 £ P+-1(p)^-~1(p)P(p)[e+(p) - 6_(p)]-1[P_(e_+ 61)TF__0(pO | P 0) -P + ( e + + e1)W+o(pO | p0)] 
p 

+4(^S2)-1 £ P-(p)P(p)(P+«++P_a-)-1[«-^-o(pO|pO)+a+PF+0(pO|pO)] 
p 

+2(«0)-i E /(p)F+(p)P(p)iy-2P--2(a+-a_) 

X { -P+a+W+«(v0\ p0)[l+P_2(a+-a_)-2]P_a_^_0(p01 p0)[l+P+
2(a+-a_)-2]} 

2 • (rcO)-1 Z ( e + - 6_)-1(e-+ €l)TF_0(p01 pO) , (63) 
<3->oo 

-A,(»= -£(«0)-i E L(P+-1-P--1)P(e+-eJ)-i-h-1(p)lW0A00\v-T>) 
p 

-2(nQ)~l E P-(P) ,Pa+a_(P+a++P-a-)-W0,o(001 p -p ) 

-2JM)- 1 E /(p)P+(p)(P+-1-P_-1)P(e+-e-)-W l , ,o
2(00|p-p) 

—•-*(»0)-i E [(ef-6-)-1-4r-Kp)]Wo.o ,(00|p-p). (64) 

In these equations, we have used the notation of Eqs. 
(37) and (38) for P+(p), P_(p), and P(p) [the latter 
quantity should not be confused with the principal 
value P which appears in Eqs. (52)-(54)], Eq. (40) for 
a±(p), and Eq. (51) for the interaction energy Wij. The 
first term in Eq. (62) is the leading contribution to the 

interaction of a zero-momentum boson with another 
zero-momentum boson. The first-order contribution to 
A0

(0) is Aoi(0), and this quantity is discussed in Appendix 
C. The first-order quantities —-Ai(0) and — A2(0) are, 
roughly speaking, perturbation theory contributions to g 
due to the interaction (51) of a zero-momentum boson 
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with nonzero-momentum bosons, either by "direct inter­
action" [Ai<°>] or by "pair interaction" [A2

(0)]. In the 
expressions for each of these quantities, the first term is 
due to virtual interactions, the second term is due to 
real interaction with superfluid bosons, and the third 
term is due to real interactions with normal-fluid bosons. 
If one identifies these different terms with their starting 
points in the derivation (outlined in Sec. 4 of Mill), 
then one finds that the functions iW(p) and A ô'Cp) of 
the general theory correspond to the superfluid mo­
mentum distribution i'L(p), whereas Nu(p) corresponds 
to the normal-fluid momentum distribution vf(p)F+(p) 
[see Eqs. (C32)]. In the zero-temperature limit, Eqs. 
(62)-(64) are in agreement with Eqs. (53)-(55) of Mil l 
when one makes the low-density approximation (see 
Sec. 2 of Mill) Wi^\W=^WajM\j±W of Eq. (9)], 
where as is the two-particle scattering length. According 
to Eqs. (63) and (64), only the virtual interaction terms 
survive in the zero-temperature limit. This last result is 
consistent with the general expectation that ground-
state expressions for a Bose fluid should be the same as 
those for a Boltzmann fluid and therefore that they 
should be independent of statistics, i.e., independent of 
any momentum distributions. We finally observe that 
all of our r = 0 results, e.g., Eqs. (42), (46), (63), and 
(64), depend only upon superfluid quantities, as they 
should since there is no normal fluid at T=0. 

The assumption that g can be calculated as the self-
energy of a zero-momentum boson can always be 
checked because there is one thermodynamic relation 
Eq. (3') of MI, which has not yet been used. According 
to Eq. (60) this relation may be written as 

(dV/dQ | n, 11.0=0 (when £^0), (65) 

that is to say, if the chemical potential has been correctly 
calculated, then the Helmholtz free energy will be 
minimal with respect to £.14 Of course, the relation for £ 
given by Eq. (49) must not be substituted into ^ before 
computing the derivative (65). 

Using the fact that G= (N)g= (E)-TS+(?tt, one can 
see for a bound system ((P=0) that the chemical po­
tential is always negative and ^ the binding energy per 
particle in absolute value. For He n g~ — (10°K)K and 
this observation can be used to justify the approxima­
tion (A5) of Appendix A. 

6. DISCUSSION 

The purpose of this paper has been to present the 
general first-order predictions of the quantum-statistical 
theory for a Bose fluid within the framework of a quasi-
particle model. Several questions for further examina-

14 Equation (65) is a minimal condition rather than a maximal 
condition, because at constant n, 0, and O, the free energy is a 
minimum with respect to any possible changes of state for an 
equilibrium system. See, e.g., L. D. Landau and E. M. Lifshitz, 
Statistical Physics (Pergamon Press, Inc., New York, 1958), 
Chap. 2. 

tion as well as some possible implications of the theory 
will be discussed in this section. 

The first, and most pressing, question concerns the 
effect of a second-order calculation on our conception of 
the quasiparticle model, i.e., does the model continue 
to provide useful insight into the microscopic physics of 
a Bose fluid when a second-order calculation is per­
formed. This question is particularly significant in the 
"high-" temperature region T<T\ where T\ is the 
transition temperature for Bose-Einstein condensation. 
Thus, most of the results of this paper reduce to well-
known free Bose-gas results in the limit £ —» 0+, which 
is equivalent to the limit T —> 7Y~. The description of 
the transition temperature region is therefore not in­
cluded in most of the thermodynamic expressions of this 
paper. Only the chemical potential has a nonvanishing 
first-order contribution when £ —> 0, which is given by 
g=-Ai<0) [see Eqs. (61)-(64)]. 

A second question of great interest is the question of 
two-particle distribution functions in the Bose fluid. In 
Sec. 8 of MI, a general prescription for calculating the 
pair-distribution function was written down, a prescrip­
tion which can easily be extended to the calculation of 
the off-diagonal two-particle density matrix elements. 
Now, on the one hand, the Fourier transform of the 
pair-distribution function is a quantity [usually called 
S(p)l which can be deduced experimentally from cross-
section measurements.15 On the other hand, the off-
diagonal density matrix elements in position space must 
be characterized by off-diagonal long-range order 
(ODLRO), a concept originally discussed by Penrose16 

and by Penrose and Onsager5 and then further clarified 
by Yang.17 The study of ODLRO can shed further light 
on the microscopic understanding of the Bose fluid. 

The question of "order" in the Bose fluid also involves 
studying the mixed-state wave function <f>r of Eq. (32), 
in which the basic pair wave function /(r), Eq. (34), is 
the primary quantity of interest. Referring to expression 
(42) for the amplitude a(p), we see that /(r) has the 
property that the normal-fluid and superfluid com­
ponents have the opposite sign, or phase. This fact 
suggests that there is an intimate relationship between 
the wave function $T and the wave functions which 
Feynman discusses in his atomic theory.1 A study of this 
relationship, together with the study of the two-particle 
distribution function may perhaps also yield greater 
insight into the role of the Feynman-Bijl relation1,18 for 
the excitation energies in a Bose fluid 

Wexe(p) = ^ ( p M p ) • (66) 

This brings us to the final question to be discussed 
here, which is: What are the excitation energies in a Bose 
fluid? Of course, Landau's original suggestion19 that 

15 D. G. Hurst and D. G. Henshaw, Phys. Rev. 100, 994 (1955). 
16 O. Penrose, Phil. Mag. 42, 1373 (1951). 
17 C. N. Yang, Rev. Mod. Phys. 34, 694 (1962). 
18 A. Bijl, Physica 7, 869 (1940). 
19 L. Landau, J. Phys. (USSR) 11, 91 (1947). 
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FIG. 1. Excitation 
spectrum for He n at 
r=1.12°K, as measured 
by Henshaw and Woods 
(Ref. 20), with inelastically 
scattered thermal neutrons 
of incident wavelength 
4.04 A. The dashed straight 
line is the phonon curve 
co = cp where c = 237 m/sec, 
and the parabola is the 
(two) free-particle curve 
ca = h2p2/M. 

there is a single energy momentum relation ccGXC(p) 
seems to have been verified experimentally for He n.20 

Nevertheless, our quasiparticle model suggests that 
there are two excitation energies co+(p) and co_(p) in a 
Bose fluid, where 

co±(p) = ± [e ± (p ) + e i ( -p ) - -gl—*cp> 
p->0 

(67) 

The motivation for the definition (67) is Eq. (B4) of 
Appendix B which together with the leading term in the 
chemical potential, Eqs. (61) and (62), shows that it is 
the definition (67) which is capable of yielding a linear, 
or phonon, momentum dependence in the limit p—>0. 
Therefore, we are led to suggest that the elementary 
excitations in a Bose fluid are: 

(1) The destruction of a superfluid (hole) quasi­
particle, corresponding to the energy co_(p) —> — g in the 
limit p —•> oo. 

(2) The creation of a normal-fluid quasiparticle, 
corresponding to the energy a>+(p) —> 2co(p)~-3g in the 
limit p—*co. 

In Fig. 1 we reproduce an experimental excitation 
curve for He n as measured by Henshaw and Woods.20 

The behavior of this curve relative to the curve for 
2cop also shown, and its turning down in the region 
p>2 .5 A - 1 , strongly suggests that Henshaw and Woods 

have measured the curve a>_(p). Our quasiparticle model 
indicates that the curve for w+(p) probably undergoes 
a smooth transition from the straight-line phonon be­
havior o)=cp to the parabola C2o>(p) —3g] in the region 
(0.6 k~l)<p<(l.2 A"1) (assuming that both quasipar-
ticles are characterized by the same phonon velocity c). 
In the lower part of this interval the double-quasipar-
ticle spectrum should be observable, whereas for higher 
momenta the o>+(p) excitations may be quite unstable. 
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APPENDIX A 

The quantum-statistical derivation of the quantities 
/+(p) and /_(p) to first order, is achieved by referring 
to Eqs. (21) and (81) of M i l l and (47) of M i l . Thus, 
one finds for the basic functions Ai(<) and Ai{>) of the 
A transformation 

^ ± « ) 0 ) k ) = A- 2 ( /3 ) ^k)K/3 J k) e ^«{G_(^ ,k ) [6 + (k )+ e i ( -k ) ] -G + ( /3 ,k )C6_(k)+ e i ( -k ) ]} - 1 

X {G-(/,k)Ce+(k) + e 1 ( -k ) ] /_ (k) e - "+*) -G + (^k) [e_(k) + e i ( - k ) ] / + ( k ) e - ' - * ) } , (Al) 

J±<»(*,k) = Z ) r ^ , k ) f ( * , k ) / ± ( k ) , 

to first order, where Gi(t,k) is given by Eq. (82) in M i l l and 

r(;,k)=zMM,k)[/+(k)efr+w-/_^-«]-i, (A2) 
20 D. G. Henshaw and A. D. B. Woods, Phys. Rev. 121, 1266 (1961). References to previous experiments are given in this article. 
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D1(k,hM)^ {G_C8>k)[ef(k)+«1(-k)]-G+C3>k)[ t.(k)+ei(-.k)]}-i 

X{G_(<i,k)[eH.(k)+e1(-k)>«^««+»-G+(<iik)[«_(k)+«1(-k)>« ,-w^(k)} _ _ » l , (A3) 

/±(k)={G_(/3,k)[«+(k)+61(-k)]-G+(^k)[e_(k)+61(-k)]}-igT ,1(k-k|00)[e±(k)+61(-k)]. ' (A4) 

Upon comparing Eqs. (92) and (115) of Mil with Eqs. 
(39), (A2), and (A3) of the present paper, one sees that 
the functions defined by Eq. (A4) must be identical 
with those of Eqs. (36). 

Now to good approximation, one may write (see end 
of Sec. 5) 

Gi(/,k)^oo(00|p-p), (A5) 

and in this case Eqs. (A1)-(A4) are greatly simplified. 
For example, the expression for Di(J39t,k) becomes unity 
in this approximation. Similarly, the expression for 
/±(k) becomes 

/±(k)^go,0-1(00| k-k)[>+(k)-6_(k)]-l 

XgT ,1(k-k|00)[e±(k)+61(-k)] , (A6) 

when the approximation (A5) is made. 

APPENDIX B 

In this appendix we give the quantum-statistical 
derivation of Eq. (42) for a(p). The derivation begins by 
referring to the first-order expression for the momentum 
distribution, Eq. (73) of Mill , which upon comparison 
with Eq. (30) of the present paper yields for a(p) the 
general relation 

a(p)=-^(p)rK&p)^oy(p) 
= - / ( p ) e - ^ - ^ 2 , o ' ( p ) . (Bl) 

We have used Eqs. (92), (97), and (115) of Mil in order 
to obtain the particular forms of (Bl), and the minus 
sign has been introduced in order that agreement with 
Eqs. (40) and (42) can be finally achieved. 

If one substitutes Eqs. (5) and the first line of (32) 
from Mill , Eq. (38) from Mil, and Eqs. (Al) of the 
present paper into the second line of (Bl), then one 
obtains Eq. (42) directly if the identifications 

«±(P)= -K iV)^ (^p ) [6 T (p )+6 1 ( -p ) ] - 1 (B2) 

are made. The approximation (A5) together with Eq. 
(51) then yields Eq. (40). 

(0,2) Difficulty 

When the first-order calculation of a(p) is made using 
the first line of Eq. (Bl), then one does not obtain 
Eq. (B2) directly. That is to say, the "complete" first-
order calculation of Ko,2f(p) differs from that of i£"2,o'(p) 
by more than simple multiplying factors. Upon using 
the identity (54) one can show that the difference be­
tween the two calculations involves higher powers of 
the function fe [see Eq. (52) for notation] which may 
be neglected to first order. It is in this sense that the 
two lines of (Bl) yield the same result. 

It seems whenever (0,2) functions are calculated that 

higher order differences with the corresponding (2,0) 
functions occur. Thus, the identity between the two 
lines of (Bl), which is quite general, does not hold 
exactly to specific orders when graphical iterations are 
performed. Of course, this (0,2) difficulty is not an in­
consistency of the theory, if only higher order calcula­
tions cancel the differences which occur at lower orders. 
This is an aspect of the theory which we have not yet 
studied in great detail. 

There is an another aspect to the (0,2) difficulty, 
which is: How can we say that it is a (0,2) difficulty 
instead of a (2,0) difficulty? That is, which line of (Bl) 
gives the "correct," or best, first-order calculation of 
a(p). This question is answered by referring to the 
general identities (102) of MIL 

lim [/(p)]-i = lim [ - r ^ p J W f o ) ] 
p^0 p-^0 

= lim C-«r^i(-p)^ i 0
,(p)], (B3) 

p->0 

where we have used Eq. (115) of Mil and Eqs. (6) and 
(30) of Mill . According to Eq. (Bl) these last identities 
are equivalent to the identity a(0)= 1. The second line 
of (B3) can be satisfied if one sets 

lim [€<(p) + € l ( - p ) ] = lim [ -*<W*(fcp) ] 
, p-*0 p-*0 

^m,o(00 |00) ( i = ± ) , (B4) 

where we have again made the approximation (A5) to 
obtain the second line of (B4). Thus, according to Eq. 
(B2), Eq. (B4) is equivalent to the identities a±(0) = l. 
If, alternatively, we calculate the right-hand side of the 
first line of (B3) by using the "complete" first-order 
expression for i£0,2'(p), then it becomes extremely 
difficult to see how the identities (B3) can be satisfied to 
"first" order. It is this fact which justifies our emphasis 
on the (0,2) difficulty rather than on a (2,0) difficulty. 
The occurrence of the (0,2) difficulty is due to the differ­
ent ways in which (0,2) and (2,0) functions are A trans­
formed [see, e.g., Eqs. (76), and (77) in Mi l ] . The (0,2) 
difficulty also occurs in the derivation of Eqs. (63) and 
(64) for Ai<°> and A2

(0). 

APPENDIX C 

In this Appendix we discuss the derivation of the 
quantity A0i

(0) of Eq. (62) which is the first-order con­
tribution to the interaction of a zero-momentum boson 
with itself. The derivation follows the pattern presented 
in Sec. 4 of Mil l (especially steps 2 and 8), except for 
the following modification (1). 

(1) Unlike the approximation mentioned in step 6 of 
Sec. 4 of Mill , we use the complete expression for the 
pair function as given by Eq. (38) of Mil to obtain 
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3Cout/Wo= / dsGont(s)X'(s,t), 
Jo 

3Ch/ (to) = I dsW (t,s)Gin' (s), 
Jo 

where 
-0 OY 

(CI) 

X'(t,s)=i*Q [ <ft'Gout'(0"{ 1 Gm'(s). (C2) 

Jo Lo oJ, 

Then, according to Eqs. (109), (110), and (112) of M i l 

[A0o ( 0 )+AO i ( o )]0(/-s) = /- and ^-independent part of X'(t,s). (C3) 
With A0o

(0) = ~ ^oo(00100), we obtain: 

A0i (0 )6(t-s) = t- and ^-independent part of X"(t,s), (C4) 
where 

-0 On' 
X" 

rp ro on' 
."(t,s) = i*Q ^ P O S - O ^ i u ' W + ^ o u / C O + ^ o u t ' W ^ t o W ] " ' 

r* r 0 On' 

^ o / ^pOJ-Oifin'W+^ou/fO]"' (cs) 
Jt Lo oJs and we have neglected the product term in the second line of (C5) since it gives a higher order contribution. 

(2) We next write the quantities Kin
f(t) and Kont

f(t) as expansions corresponding to their diagrammatic origins, 
[See Eqs. (50) and (51) of M i l l . ] 

Kin
/(t) = Kin

,(t)Q+Kin
f(t)1+Kin

f(t)2+ • • • , • 

i^out ' ( 0 = ^ o u t ' (t) 0 + K0ut 0 0 1 + ^ o u t ' if)r\ , 

where the first term in each of these two expansions is given, respectively, by the equations 

(C6) 

r0 
ifin'(0o= / dsK"(t,s)GJ(s), 

Jo 
(C7) 

^out'(0o= / dsGoat'(s)K"(s,t) 
Jo 

with 
K"(t,s)^3t"(i,s)-Aoime(t-s). (C8) 

The term 
- E k i W W O , 

where 

JTo a )(^,k) = J ^ { e x p - ( / - j ) [ € ( k ) + € ( - k ) ] } / 8 ( 0 0 | k - k | 0 0 ) p ( — — - — - ) , (C9) 
\ e ( k ) + € ( - - k ) / 

which should really be included on the right-hand side of (C8) is more conveniently treated by adding it to the 
function — ]Ck K2

(1)(t>s,k) of Eqs. (C30) and (C31) (in this connection, see step 5 in Sec. 4 of M i l l ) . We observe 
that Eqs. (C7) are actually coupled integral equation for the determination of Kin

f(i)o and Kout(t)o, as one can see 
explicitly by referring to Eqs. (C4)-(C6) and (C8). To the order which we are calculating one may replace Gin'(s) 
by 1 and Gout'(s) by 8(/3—s) in Eqs. (C8). Equations (C6) together with the first-order solutions for 2£in'(Oo and 
Kout(t)o must be substituted into (C5) to determine A0i

(0) by (C4). 
(3) We may write A0i(0) as a sum of three terms 

Aoi^ = Aoa(0)+Ao&W+AocW, (CIO) 

where [see Eq. (C4)] A0a
(0) comes from X"(t,s)i, A0&

(0) comes from 3C"(*,s)2, and A0c
(0) comes from 3Z"(t,s)o. Here 

we refer to the second line of Eq. (C5) to define 

3e"(*,*)iS J*Q f dt'[b08-t')K-J(s)i+Kont'(t'),]«'| 
0 0-

L.O 0. 
(CH) 
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The quantity K"(t,s) of Eq. (C8) can then be written as 

K"(t,s)£*K"(t,s)o+K"(l,s)l+K"(t,s)2 (C12) 

to the order which we calculate, where 

K" (t,s) 0= 3C" (t,s) o - AocW0 (t- s), 

K"(t,s)1=X"(t,s)1-A0a«»d(l-s), (C13) 

K"(t,s)z=X"(t,sh-Am«»e(t-s). 

We may then solve Eqs. (C7) and (C8) by iteration using in first approximation 

K"(t,s)^K"(t,s)i+K"(t,sh. (C14) 

It is to be emphasized that the consistent first-order calculation of A0i
(0), in which terms to 0(/2), say, are retained 

and higher order terms, e.g., 0(/2
2) terms, are neglected, requires the approximate calculation of K"(t,s)a, via 

Eqs. (Cll) and (C13). The function K"(t,s)o must then be substituted into Eqs. (C7) in order to obtain a better 
solution for Kin'(t)o and Koat'(t)o, etc. Fortunately, this iteration procedure ends after a few iterations, with only 
0(/2

2) or smaller terms remaining in K"(t,s)o- Thus, it should be clear that A0i
<0) can be determined from the pre­

ceding equations as soon as we know i£0ut'(X)i,2 and Kin'(t)i,2. The remainder of the Appendix will therefore be 
devoted to the expressions for these latter quantities. 

(4) In order to proceed further it is useful to define the following quantities which appear in the expressions for 
K0J(t)h Kmt'(t)z, Kin'(t)i, and Kin'(t)2. 

/i(p) = l+/(p)F+(p){l-P+-1(p)P--1(p)C«+(p)-«-(p)]2}, (C15) 

/ (p) = /i(p)-^(p)^-(p)«-1(p)C«+(p)-«-(p)]CJP+-1(p)-i5--1(p)], (C16) 

ff±^08,p) = P±-1(p)P(p){exp/3[€T(p)-e±(p)]}C6±(p)-eT(p)]-»[6¥(p)+e1(-p)]/(p), (C17) 

H±V (ftp) = AP(p)PT-i(p)[eF ( p ) - €±(p)]-1C«±(p)+«i(- P)]A(P) 

+[«±(p)+«1(-p)]Ce t(p)-eF(p)j-V(p)F+(p) 

+2/(p)F_(p)P(p)«-1(p)P+-1(p)i>--1(p)a±(p), (C18) 

Sy=€ < (k 1 )+ey (k 2 ) -€ (k 6 ) -€ (k 6 ) , (C19) 

G«*ftkik, | k3k4) = g«(kik,| k 3 k 4 ) - £ /,(kik, | k6k61 k3k4y*«[ (£* ' -A ) -* - ^ r 1 ] , (C20) 
kek6 

g^(kik , | k3k4) = G</(0,k1k2| k3k4) 

=/1(k1k1 |k Ik4)+2/.(kik,|k,k.|k,k0r(———!———)-(—L-)l, (C21) 
*•*« L\e(ki)+e(k2)-e(k5)-e(k6)/ \B{i- A/A 

where A is some energy function. It is interesting to note the similarity between Eq. (C21) and Eq. (52) for 
g#(kik2|k3k4). Special cases of (C20) and (C21) are 

Goo-AaaOO|p-p) = Gi(/,p), 

g« i l"(p-p|00) = foo(00|p-p) ) (C22) 

^n=«.-(p)+€i(-p) J 

where G«(/,p) was originally defined by Eq. (82) of Mill . Further, more complicated, functions which are en­
countered are: 

<rp On' 
Ki(t*v)= E ijH^(p,p) • U-" (»>+ E A'<«0S,p)ECe(,-)i,«35fl.-1/*(pO|k^|pO), (C23) 

»,*-+.— ( t>o)Lp 0 J 5 »=-K— keke 

where £*o=€i(p) — e(k5) — e(k6); 

^ 2 f e p ) = i^[€- r-(p)-6-(p)]-1P(p) Z ti«<^«-^)/ f(p)^./(p) 

XW-SuW-^nga'Hv-vltyGtl-s, p)-g„o(00| p-p)Gtl*n(t-s, p -p |00) 

-E/2(oo|k-k|p-pMJl5Jr
I(k)Ce(k)+6(-k)]-i[5iygoo(oo|p-p)+E/2(oo|ko-k„|p-p) 

k k0 

X (C£ iy(k„)-^1]-1-CJB i l(ko)-^i(k)]-1)(e-(-'^/1(k)_e-(S- ()Si l(ko) )-]} > ( C 2 4 ) 
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where Ba(k) = Aa— e(k)— e(— k) a n d i n = « i ( p ) + « i ( - p ) ; 

-ixHlexp(s-t)(ip+^vm(ef+e^rigm(00\P~v)Mp-p\00) 

+ Z / 2 ( 0 0 | k - k | p - p ) ( 6 k + e _ k ) - 1 ( e k + « - k - e p - € _ p ) - 1 

X(Cexp(^ - / ) ( e k +6_ k -« p - e_ p ) ] [goo (00 |p -p ) -go i B » 1 (p -p | 00 ) ] 

+ C / i ( p - p | 0 0 ) + E / 2 ( 0 0 | k o - k „ | p - p ) ( e k + e _ k - € p - e _ p ) 

ko 

X[exp(j-/)(ek0+€_k0~€p-6-p)](«k+€_k—ek0—€_ko)- I(ep+e_p—6k0—e-fc,,)-1])} , (C25) 

where B0i=ei(—p) — e(k)— e(— k) and ifo(I)(M,P) is defined by Eq. (C9). 

if3(M,p) = i (^ ) 2 goo 3 (00 |p-p)C6 + (p)+6 1 ( -p) ] - 1 [6_(p) + e 1 ( -p) ] - 1 P 2 (p) 

x^[e+(p)+«_(p)] ^ y7 i(p)e8[ '«^+e i<-^](l-S>y) 

X{/i(p)(e_s[e '<p)+<l (_I , )1-e"<[ '»'<p)+e i ("p)1)+/)'(p)e~ ( t e i<I ' )+e i (~"p)1} 

- J P * ( p ) C ^ ( p ) - e _ ( p ) > » { g o D ( 0 0 | p - p ) - 2 : / * ( 0 0 | k - k | p - p ) 
k 

X ( e x p ( ^ - 0 C e ( k ) + 6 ( - k ) ] ) [ 6 ( k ) + e ( - k ) ] - i } 

X L { C ^ ( p ) + « i ( - p ) ] V ^ « ( p ) - C 6 + ( p ) + e 1 ( - p ) ] [ e _ ( p ) + e 1 ( - p ) ] 

X(l-5 e + , - e_)e^-8>t e+<p '+-(p)l}, (C26) 
ir408 ;^p)=|(^)^(p)/+(p)/_(p) e«^<p>+-<p) lgoo2(OO| p - p ) 

XC6+(p) + a 1 ( - p ) ] - 1 [ e _ ( p ) + e 1 ( - p ) ] - 1 E y e ( ^ ( ) [ ( ' ( p ) - e < < p ) 1 g a 4 ' 1 ( p - p | 0 0 ) 

- | P 2 ( P ) E V ( l - ( l -8«)X«^.-«J / , - (p) /y(-p)e«"<» ) + «<-»" 

X { g « ( p - p | 0 0 ) + E / i t W l k - k l p - p J I I e W - o * * ] ^ - ! } , (C27) 
k 

where 
^ ; - 6 , ( p ) + e i ( - p ) - € ( k ) - 6 ( - k ) 

and 
^ i i = € y ( p ) + e i ( - p ) . 

The principal value is understood for energy denominators in the above expressions, and the appearance of a 
factor [1 —5e+,__e_J in Eqs. (C26) and (C27) is discussed in step 7 below. 

In the dilute hard-sphere Bose gas (DHSBG) limit of Sec. 4 in M i l l the Eqs. (C15)-(C18) become (at T = 0 ) 

/ i ( p ) = l ; (CISa) 

/ ( p ) = 0 , (C16a) 

H±UQ*,i>) = 0; (C17a) 

# +
( 2 ) (&P) = 0, (C18a) 

F-» )03,p) = / - ( p ) = H e l . ( p ) - € - ( p ) 3 - 1 [ ^ ( p ) + € i ( - p ) ] . (C18b) 

The second and third of these last relations, i.e., (CI6a) and (CI7a), are valid for all T. 
(5) Using the definitions given in step 4 above one finds the following results after some tedious manipulations. 

^ h / O O i ^ i ; / dsKifap), (C28) 
p Jo 

Kent'(!)! = *£ Kl(P,t,V), (C29) 
p 

* V « 2 = E f &{Cl + " , (p ) / 'V(p)K2(« ,5 ,p ) - - i r 2 «>(Up)+ / (p )^ - (p )a - 1 (p )^ I (p )^ 3 (M,p)} , (C30) 
p Jo 

i f o u t ' « 2 = £ {[ l + / (p)^ + (p)K 2 ( j8^ ) P)-^2 ( 1 ) ( /3^ ,p) + / (p) / ? - (p) a - 1 (p) i > - 1 (p)^4^<,p)} , (C31) 
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where the N'J functions of the general theory (Sec. 6 of M i l or Sec. 3 of M i l l ) can be identified in these expres­
sions by the following relations 

NzQ'(v)=-vf(v)F-(v)P-1(vh-1(l>), ( C 3 2 ) 

and where ce(p) is defined by Eq. (42) and P(p) by Eq. (A2). Then, as we have remarked below Eq. (64) iVn'(p) 
may be identified as the normal fluid momentum distribution v'F+, and i W ( p ) (essentially) as the superfluid 
momentum distribution F_. 

In the DHSBG limit we find that Eqs. (C28)~(C31) go over to the corresponding expressions which may be 
derived directly according to the procedure outlined in Sec. 4 of M i l l . I t is of great value to derive the results 
(C28)-(G31) in the DHSBG limit first, in order that one may have some check on the correctness of the general 
expressions when they are subsequently derived. We see from the above expressions (C15)-(C31) that the use of 
the complete pair functions [Eq. (38), M i l ] has led to quite complicated expressions for Kin'(t)it2 and KOVLt

f(t)it^ 
Equations (C24) and (C28) have been written in a manner which suggests the possibility for making an "approxi­
mate" first-order calculation of A0i(0) by neglecting terms with more than one / 2 function. This approximation is 
also implicit when one uses the second line of (C5) for 3Z"(t,s). Similarly, it might be possible to simplify Eqs. 
(C26) and (C27) in an approximate manner and, in fact, terms involving f2 functions have already been omitted 
from these expressions for reasons of simplicity. Finally, we note that we have used the approximate formulas 
(43)-(45) of M i l l for the line factors in the derivation of Eqs. (C28)-(C31) and this has involved the further 
neglect of / 2 functions. Unfortunately, until additional insight into these equations has been gained or numerical 
studies have been made, any such approximation cannot really be justified. 

There is one good argument which suggests that the quantities of Eqs. (C28)-(C31) are indeed small for the 
general Bose fluid. Thus, when one studies the DHSBG limit by using Eqs. (CI6a) and (CI7a), which are valid for 
all T (such that x>0)> then one finds that in first order K in'(t) 1,2=K0ut(t) 1,2 = 0. This remarkable result, over­
looked in M i l l , means that to 0(a5/2) 

AOi(0) = O (for the DHSBG). (C33) 

Since this result is valid for all 1\ and not just T = 0 , one has reason to believe that A0i(0) and the quantities of 
Eqs. (C28)-(C31) are probably small, even for He n . An approximate calculation of them would suffice. 

(6) We now state an important identity which is extremely useful in the derivation of the expressions for 
Kinit)!,! and Kont'(t)i,2 of step 5, Eqs. (63) and (64) of Sec. 5 for Ai(0) and A2

(0), respectively, and finally for A0i (0 ): 

[ ^ ^ { ^ ( k x k a l k 3 k 4 ) + E eW^iWk5k6|kak^-r1} 

= -A^{e-^AGij
A{h-~t, kik2 | k 3 k 4 ) - ^ ^ G , / ( / 1 - / , kik a | k3k4)} , (C34) 

where B^ is given by Eq. (C19) and we have used (C20). 
(7) We finally observe that some of the terms containing [exps (€++€_)] as temperature-dependent factors in 

K^{t) and Koui
f(t) [Eqs. (C26) and (C27)] become temperature-independent in the DHSBG limit, for in the 

latter case € + + € - = 0 to first order. In this limit these terms do not give a contribution to A0i(0) but must be in 
eluded in the A2

(0) expression of Eq. (64). The contribution to A2
(0) in this case is 

- W(nQ)~i E vfF„PeCi ( e+ - e_)-2 (e++ €l) (e_+ ex )^ , e_, 
P (C35) 

W=Swh2na/M. 


